Exemplo De Média Ponderada Em Movimento


A maneira estranha que uma média móvel faz a tendência de uma massa de medidas confusas pode ser vista ao traçar a média móvel de 10 dias juntamente com os pesos diários originais, mostrados como pequenos diamantes. As médias móveis que usamos até agora dão igual significado a todos os dias na média. Isso não precisa ser assim. Se você pensa sobre isso, não faz muito sentido, especialmente se você estiver interessado em usar uma média móvel de longo prazo para suavizar os colisões aleatórias na tendência. Suponha que você esteja usando uma média móvel de 20 dias. Por que seu peso, há quase três semanas, deve ser considerado igualmente relevante para a tendência atual como seu peso nesta manhã. Várias formas de médias móveis ponderadas foram desenvolvidas para resolver essa objeção. Em vez de somar as medidas para uma seqüência de dias e dividir pelo número de dias, em uma média móvel ponderada, cada medida é primeiro multiplicada por um fator de peso que difere do dia a dia. A soma final é dividida, não pelo número de dias, mas pela soma de todos os fatores de peso. Se fatores de peso maiores forem usados ​​para dias mais recentes e fatores menores para medidas mais atrasadas no tempo, a tendência será mais sensível às mudanças recentes sem sacrificar o alisamento de uma média móvel. Uma média móvel não ponderada é simplesmente uma média móvel ponderada com todos os fatores de peso iguais a 1. Você pode usar quaisquer fatores de peso que você gosta, mas um conjunto específico com o Jawbreaking Monicker Exponentially Suavizado Mover Média provou ser útil em aplicações que vão desde o radar de defesa aérea Para negociar o mercado da barriga de porco Chicago. Vamos colocar isso também em nossas barrigas. Este gráfico compara os fatores de peso para uma média móvel de 20 dias exponencialmente suavizada com uma média móvel simples que pesa todos os dias igualmente. O alisamento exponencial dá a medição de hoje duas vezes o significado que a média simples atribuiria, a medição de ontem um pouco menor do que isso, e cada dia sucessivo inferior ao seu antecessor no dia 20, contribuindo apenas com 20 para o resultado com uma média móvel simples. Os fatores de peso em uma média móvel suavemente exponencial são potências sucessivas de um número chamado de constante de suavização. Uma média móvel suavemente exponencial com uma constante de suavização de 1 é idêntica a uma média móvel simples, uma vez que 1 para qualquer potência é 1. As constantes de suavização inferiores a 1 pesam mais os dados mais recentes, com a polarização para as medidas mais recentes aumentando à medida que o alisamento Diminui constantemente para zero. Se a constante de suavização exceder 1, os dados mais antigos são mais ponderados do que as medidas recentes. Este gráfico mostra os fatores de peso resultantes de diferentes valores da constante de suavização. Observe como os fatores de peso são todos 1 quando a constante de suavização é 1. Quando a constante de suavização é entre 0,5 e 0,9, o peso dado aos dados antigos cai tão rapidamente em comparação com medidas mais recentes que não há necessidade de restringir a média móvel para Um número específico de dias, podemos calcular todos os dados que temos, de volta ao início e permitir que os fatores de peso calculados a partir da constante de suavização descartem automaticamente os dados antigos à medida que se torna irrelevante para a tendência atual. Tenho uma série de tempo Dos preços das ações e deseja calcular a média móvel em uma janela de dez minutos (veja o diagrama abaixo). Como os tiques de preços ocorrem esporadicamente (ou seja, não são periódicos), parece mais conveniente calcular uma média móvel ponderada no tempo. No diagrama há quatro mudanças de preço: A, B, C e D, com os três últimos ocorrendo dentro da janela. Observe que, porque B só ocorre algum tempo na janela (digamos 3 minutos), o valor de A ainda contribui para a computação. Na verdade, tanto quanto eu posso dizer, a computação deve basear-se exclusivamente nos valores de A, B e C (não D) e as durações entre eles e o próximo ponto (ou no caso de A: a duração entre o início Da janela de tempo e B). Inicialmente D não terá qualquer efeito, pois sua ponderação de tempo será zero. Isso é correto. Assumindo que isso está correto, minha preocupação é que a média móvel ficará mais do que a computação não ponderada (o que representaria o valor de D imediatamente), no entanto, a computação não ponderada tem suas próprias desvantagens: A Tem tanto efeito sobre o resultado como os outros preços apesar de estar fora da janela de tempo. Uma onda repentina de carrapatos de preços rápidos prejudicaria fortemente a média móvel (embora talvez isso seja desejável) Alguém pode oferecer algum conselho sobre qual abordagem parece melhor, ou se há uma abordagem alternativa (ou híbrida) que vale a pena considerar, 14 de abril 12 às 21: 35 Seu raciocínio está correto. O que você quer usar a média para embora, sem saber que é difícil dar qualquer conselho. Talvez uma alternativa seja considerar sua média de corrida A, e quando um novo valor V entrar, calcule a nova A média a (1-c) AcV, onde c está entre 0 e 1. Desta forma, os tiques mais recentes têm Uma influência mais forte, e o efeito de carrapatos antigos se dissipa ao longo do tempo. Você poderia até mesmo c depender do tempo desde os tiques anteriores (c se tornando menor à medida que os tiques se aproximam). No primeiro modelo (ponderação), a média seria diferente a cada segundo (como as leituras antigas obtêm menor peso e novas leituras mais altas), então está sempre mudando o que pode não ser desejável. Com a segunda abordagem, os preços fazem saltos bruscos à medida que novos preços são introduzidos e os antigos desaparecem da janela. Respondeu 14 de abril 12 às 21:50 As duas sugestões vêm do mundo discreto, mas você pode encontrar uma inspiração para o seu caso particular. Dê uma olhada no alisamento exponencial. Nesta abordagem, você apresenta o fator de suavização (01) que permite que você altere a influência dos elementos recentes no valor da previsão (os elementos mais antigos são atribuídos pesos exponencialmente decrescentes): criei uma animação simples de como o alisamento exponencial rastrearia o Uma série de tempo uniforme x1 1 1 1 3 3 2 2 2 1 com três diferentes: veja também algumas das técnicas de aprendizagem de reforço (veja os diferentes métodos de desconto), por exemplo TD-learning e Q-Learning. Sim, a média móvel será, naturalmente, atrasada. Isso ocorre porque seu valor é informação histórica: ele resume amostras do preço nos últimos 10 minutos. Esse tipo de média é inerentemente laggy. Ele tem um deslocamento construído em cinco minutos (porque uma média de caixa sem compensação seria baseada em - 5 minutos, centrada na amostra). Se o preço estiver em A por um longo período de tempo e, em seguida, muda uma vez para B, leva 5 minutos para a média para alcançar (AB) 2. Se você quiser uma média de uma função sem qualquer mudança no domínio, o peso tem Para ser uniformemente distribuído em torno do ponto de amostra. Mas isso é impossível para os preços que ocorrem em tempo real, uma vez que os dados futuros não estão disponíveis. Se você quer uma mudança recente, como D, para ter um impacto maior, use uma média que dê um peso maior aos dados recentes, ou um período de tempo mais curto, ou ambos. Uma maneira de alisar dados é simplesmente usar um único acumulador (o estimador suavizado) E e fazer amostras periódicas dos dados. S. E é atualizado da seguinte forma: I. e. Uma fração K (entre 0 e 1) da diferença entre a amostra de preço atual S e o estimador E é adicionado a E. Suponha que o preço tenha sido em A por um longo tempo, de modo que E esteja em A e, de repente, muda Para B. O estimador começará a se mover para B de forma exponencial (como aquecimento, arrefecimento de carga de um capacitor, etc.). No começo, ele dará um grande salto e, em seguida, incrementos menores e menores. A rapidez com que ele se move depende de K. Se K é 0, o estimador não se move, e se K é 1, ele se move instantaneamente. Com K você pode ajustar a quantidade de peso que você dá ao estimador versus a nova amostra. Mais peso é dado a amostras mais recentes de forma implícita, e a janela de exemplo basicamente se estende ao infinito: E é baseado em cada amostra de valor que já ocorreu. Embora, obviamente, os mais antigos não tenham influência no valor atual. Um método muito simples e bonito. Respondeu 14 de abril 12 às 21:50 Isso é o mesmo que a resposta de Tom. Sua fórmula para o novo valor do estimador é (1 - K) E KS. Que é algébricamente o mesmo que E K (S-E). É uma função de mistura quotlinear entre o estimador atual E e a nova amostra S onde o valor de K 0, 1 controla a mistura. Escrevê-lo dessa maneira é agradável e útil. Se K é 0,7, nós tomamos 70 de S e 30 de E, o que é o mesmo que adicionar 70 da diferença entre E e S de volta para E. ndash Kaz 14 de abril 12 às 22:15 Ao expandir a resposta de Toms, a fórmula Para ter em consideração que o espaçamento entre carrapatos pode ser formalizado (os tiques de fechamento têm uma ponderação proporcionalmente menor): a (tn - t n-1) T que é, a é uma proporção de delta do tempo de chegada sobre o intervalo de média v 1 (uso anterior Ponto) ou v (1 - u) a (interpolação linear, ou vu (próximo ponto) Mais informações são encontradas na página 59 do livro Uma Introdução à Finança de Alta Freqüência.

Comments

Popular posts from this blog

Watch Live Forex Trades

Download Grátis De Forex Autochartist

Forex Trading In Islam Urdu Notícias